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Maximum-Likelihood Estimation of Evolutionary
Trees from Continuous Characters

JOSEPH FELSENSTEIN'

When we try to reconstruct the evolutionary tree of a group of organisms by
examining a series of characters, we are not applying strict logical deduction but
are making a guess in the presence of uncertainty. It is therefore appropriate to
think of the problem in terms of statistical inference. This approach was first sug-
gested by Edwards and Cavalli-Sforza [1-4]. The data collected by systematists
and by students of molecular evolution are mostly for discrete characters, such as
the presence or absence of a morphological structure or the amino acid sequence
of a protein. But much data are also collected for quantitative characters, such as
gene frequencies and measurements on morphological traits. In this paper, I will
confine my attention to quantitative characters. This is the case originally con-
sidered by Edwards and Cavalli-Sforza. They proposed that the estimation of
evolutionary trees be carried out by the method of maximum likelihood. However,
they found troublesome singularities in what they believed to be the likelihood
surface [3, 4]. They were forced to fall back on ad hoc approaches which did not
have an explicit statistical justification (their "method of minimum evolution" and
"additive tree model"; see also [5]). Malyutov et al. [6] have described another
ad hoc approach.

In this paper, I will use the basic model proposed by Edwards and Cavalli-Sforza.
I will show that if we are less ambitious than they were, and redefine the problem
so as not to attempt to estimate as many quantities, we can construct a likelihood
function which does not have any such singularities. It is then possible to construct
computer programs which obtain maximum-likelihood estimates of the evolutionary
tree when the data are in the form of quantitative measurements.

TREES

Before the model is described in detail, it may be helpful to consider what is
meant by the term "evolutionary tree." If we knew nothing of the amount and
quality of real data available, we might wish to know the entire evolutionary history
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FELSENSTEIN

of a group of organisms, including the exact pedigree of their ancestors and the
phenotype of every individual which has ever existed. Lack of sufficient relevant
information immediately forces us to abandon this attempt. With no hope of dis-
covering pedigrees, we must usually confine ourselves to an attempt to discover
the pattern of speciation events (or their equivalent). With no hope of discovering
individual phenotypes, we are restricted to statements about such quantities as
population means, and only at certain specified moments (such as the times of the
branchings). We are thus usually restricted to estimating the topological form of
the tree, the times of the forks, and the mean population phenotypes at these nodes.

Cavalli-Sforza and Edwards [3] encountered singularities when they attempted
to estimate all of these quantities at once. In doing computer iterations searching
for the maximum-likelihood tree, they found that an infinite increase in their likeli-
hood function could be achieved simply by taking any internal segment of a tree
and shortening it to length zero. They were trying to estimate the times of branch-
ing, t1 and t2, at the ends of each segment, as well as the mean phenotypes, x and
y, in those populations. The overall likelihood of a tree was computed as the
product of probabilities corresponding to each segment of the tree. The term cor-
responding to a particular segment was of the form J(yIx, t1, t2)dy. The function
f dy is the probability that a population starting at phenotype x at time t1 will
change to a phenotype in the interval (y, y + dy) between times t1 and t2. But if,
in a tree, t1 = t2 and x = y, this probability is not an infinitesimal quantity but
one. It is certain that in the time interval from t1 to ti, the population will "move"
from x to x. Thus by setting a segment length to zero, we have achieved an infinite
increase in "likelihood" of the tree, defined in this particular way. Furthermore,
this "likelihood" increases continuously as the length of the segment in time is
shortened and as y is made closer to x. Thus an iterative procedure for obtaining
a maximum-likelihood tree will simply shorten one segment of the initial tree and
finally "blow up" when the segment length reaches zero. Edwards [4] has since
concluded that the function which they were calculating was not the likelihood.
This is at least intuitively reasonable, since one would hope that a likelihood surface
would not have a singularity unless the data give infinitely more support to one
hypothesis than to any other.
One way of avoiding this problem is to make no attempt to estimate the pheno-

types at the forks of the tree. We shall see that doing this, estimating only the
topological form of the tree and the times of branching, leads directly to a likeli-
hood formula without singularities. In this formula, there is almost no difference
between the likelihood of a tree with a very short segment and a similar tree in
which this segment has zero length.

THE MODEL

To keep derivations manageable, I will state an oversimplified model and will
discuss its extension to more realistic cases later in this paper. The model is that
used by Edwards and Cavalli-Sforza [1, 2]. We consider p characters evolving
independently. As time passes, each character follows a Brownian motion, with a
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mean displacement of zero and a variance in displacement of oJ2 per unit time. This
means that after t units of time have elapsed, a phenotype can be considered to
have changed by an amount drawn from a normal distribution with mean zero and
variance cr2t. At the same time, the populations occasionally split. Immediately
after the time of splitting, the two daughter populations have the same phenotypes
at each character, but from that moment on the phenotypes in the two populations
change independently by continuation of the Brownian motion process in each
population. Our data consists of the phenotypes at the branch tips of a tree. The
expression for the likelihood of a tree will be the probability density of this ob-
served data given that evolution has taken place according to that particular tree.
We will need a formula for this probability density.
As an example, consider the simple evolutionary tree shown in figure 1. The tip

xi X2 X3 X4 X5
to

to OXo

FIG. 1.-Tree used as example in text

populations are numbered 1-5, and the forks are numbered 6-9. The tj represent
the times of the nodes. The values x1 through x5 are the observed phenotypes of a
character. Consider x1 and x3, as well as the unknown phenotypes at the forks below
these populations, x6, x8, and x". Assume for the moment that the initial value x0 of
the character is known. Obviously,

X1- (X1 - X6) + (X6 - X8) + (X8 - X9) + (X9 - X0) + X(,

X3 (X3 - X8) + (X8 - X9) + (X9 - XO) + XO.

(1)

(2)
If we knew only the time, ti, and the initial phenotype, xo, what is the distribution
of x1 if it is generated by the Brownian motion process? Each of the successive

and
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displacements x1- X6, x6 - x8, x8- xg, and xg - xo are drawn from normal dis-
tributions. Therefore their sum, xI, is normally distributed with mean xo. Its vari-
ance is the variance of the sum in equation (1). Since the component parts are
independent, the variance of the sum is the sum of the variances:

var (xl) - var(x1- x6) ±var(x6 - x8) + var(x8 - x9) + var(xo - x,)
- o-2(tl t6) + o-2(t6 - t8) + o2(t8 - t9) + o2(t9 - to) (3)

Cr2(t- to).
Thus each of the phenotypes x1, X2, X3, X4, and X5 is normally distributed with mean
xo and variances o-2(t1 - to) . . , o-2(t5 - to). Since each value is the sum of
normally distributed variates, the set of values (x1, . . . , X5) follows a multivariate
normal distribution. To completely characterize such a distribution, we need only
know the means, variances, and covariances. We know the first two, so we want
to obtain the covariances for all pairs of tip populations. Consider the covariance
of xl and X3. To calculate it, we must obtain the sum of all pairwise covariances
between terms in equation (1) and terms in equation (2). All of these covariances
are zero except when the same term appears in both equations. Then

COV(X1, X3) COV(X8 -X9, X8 - X9) + COV(X9 - Xo0 X9 - XO)
- var(xs- xg) + var(x9 - xo) (4)
-&2(t8 - to))

That all other terms are zero follows from the independence of the change in a
character during different time periods.
Thus the distribution of (x1, . . . , x5) is multivariate normal, with means being

xO and the covariance between populations i and j being -2 (tk - to), where tk is
the time of the latest common ancestor of populations i and j. The covariance of
two populations is thus proportional to-the length of time they shared a common
ancestor, and the variance of the distribution of a population's phenotype is propor-
tional to the time it has been evolving. We can write the probability density of the
vector of values x (x, .... Xn) as

f(xITxoo-2) 2

r 11 (5)
exp -2 (x-x,) (O2T)-1(x-xo)'j dxldx2 . . . dXn,

where x( is the vector (xo, xo, . . . , xo), n is the number of tip populations, and T
is the n X n matrix whose (i, j) element tij is the time of joint evolution of popula-
tions i and j.

Actually, we have data on p characters, not just on one. Let x($) (x1(i, ...
Xn(i)) be the vector of phenotypes of character i in populations 1 through n. Let
xoM be the initial phenotype of character i at the root of the tree, and let xo0M' be
the corresponding vector (xo1Y . ..., xo). Since evolution in different characters
is assumed to be independent, the probability density of the whole set of data, given
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T, the xo(i) and o.2, is given by the product of p expressions, each like the right-
hand side of equation (5), giving

1 r 1
2(2gT)np/2 Io2TI/ exp 2

(6)
p

(X(i) xo~m)) (0-2T)- Xi-oi dxldX2 . .. dxn

Considered "a priori," holding T, the xo(i) and o2 constant and varying the pheno-
types of the characters in the tip populations, equation (6) gives the probability
density for each possible set of data. Considering equation (6) "a posteriori,"
holding the observed xjM) fixed and letting T, v.2, and the xoM vary, it gives the
likelihood of each combination of these quantities. It is this which forms the basis
of maximum-likelihood estimation of evolutionary trees, as specified by T.
The reader may be forgiven a certain skepticism at this point. If equation (6)

gives the probability (actually, the probability density) of obtaining the observed
data, why does it not contain any terms giving the probability that a random pat-
tern of branching would give the tree T? The logical status of such terms is at least
questionable. While they seem to provide prior probabilities for the trees T, any
model of branching contains parameters, such as a rate of splitting, X, which must
themselves be estimated by maximum likelihood. Thus we do not have a true prior
distribution but are still engaged in maximum-likelihood estimation. Under these
circumstances, the use of such a pseudo-prior is questionable.
When such terms are inserted in a straightforward way, the resulting "likelihood"

surface has singularities. This suggests that more careful consideration is needed
before the branching process can be taken into account adequately. A model of
generation of the tree by random branching is also unrealistic in at least three
major respects. It fails to take into account the continual risk of extinction. It
assumes that we are observing all surviving populations, whereas usually our data
are for a sample of only a few populations out of many. Furthermore, these few
populations may be a very biased sample of those which survived. For all of these
reasons, I do not feel that it is appropriate to insert terms for the branching process
into equation (6). Cavalli-Sforza and Edwards [3] came to the same conclusion,
and I see no reason to dispute their judgment on this point.

In addition to T, we are also estimating Cr2 and the xoM. I will attempt to give
the xOM a decent burial later in this paper. As for cr2, it is completely confounded
with T in most cases. If we have values of T and Q.2 which maximize the likelihood,
we can double Cr2 and halve the ti. Since the product, o-2T, remains unchanged,
and since cr2 and T enter into equation (6) only in their product, the likelihood
must necessarily also remain unchanged.

Unless we have prior knowledge of 0-2 or of some of the ti,, we are actually
estimating o2T, not T. It is often convenient to set r2 =1 and to think of the
resulting values of T as times measured in units of l/cr2.

475



FELSENSTEIN

PRUNING THE TREE

Equation (6) is unusable on at least two grounds. The xi have been assumed to
be independent, while the characters we actually observe are rarely independent.
In addition, the likelihood expression is so cumbersome as to be nearly useless. It
involves inverting a matrix each time a likelihood is calculated. Searching for the
maximum-likelihood value of T would be a very slow process, even with a large
computer. In this section, I will outline a faster method of computing the likelihood.
I will show later in the paper that this method can be easily extended to deal with
correlated characters.

Consider again the tree in figure 1. Pick two branch tips which are both imme-
diate descendants of the same fork, for example, populations 1 and 2 (we could
also have chosen 4 and 5). Both are immediate descendants of fork 6. Let v1 = t
- t6 and v2 = t2- t6 be the lengths of the segments leading to populations 1
and 2. Now we replace the two phenotype values for each character in populations
1 and 2 by two new variables, ul(i) and x6(i, defined by

U1 X1-X2

and (7)

=( (V1 + V2
Xi +

V1 + V2
X2

We want to know the distribution of the new sets of phenotypes x) = (Ul(t), x60(),
x3( x x5(i)). Since the x3), x4(i), and x5(i) are unchanged, and since the ul(i)
and X6M are linear combinations of normally distributed quantities, the distribution
must be multivariate normal. To characterize the distribution, we need only know
the expectations and the covariances of the new population phenotypes. The expec-
tations and pairwise covariances of the xg"), x4"), and x5") are unchanged. For the
expectations of the ul") and the x6) we have

E(ulM)) E(xMi) - E(X2(i)) = XO- XO(i) 0

and

E(x6))= ( +1 )2 )(E(x ) ( E(x2()) (8)

V2XOM + vIxOM(i
V1 + V2

For their variances, we have

var(u1,i) = var(xi( )) + var(x2(i)) 2cov(x~i),x2( ))
- C2(t _ to) +± -2 (t2 to0) - 2a2(t6 - to)
- o-2(tl + t2 - 2t6)
- cr2(vl + V2),

and

476



MAXIMUM-LIKELIHOOD TREES

var(x()) = V )2 var(xi(t)) + + var(x2(t))
(Vi+ V2)2 (v1+ ;2)2

2
V1V2 co(x M- 2 ( + )2COV(Xl(2),X2(t))(VI -j V2)2

- F v22 (t1 - to) + V12 (t2 - to)- 2v1v2(t6 -t) 1

c2 F -t
- V22(t1 -6) +v12(t2 -t) 1

L (V + V2)2 toj

VlV2
= 2 L a+ to

(V + V2)

For the covariance of u, M and x6M ,

COV(U(t), X6(M)) =( + ) cov(X1"),X(, ) ) - ( ± ) COVr(Xi(,X2()

+ VI + V V)+°(1 V2
COV(XI)

± ( ~1 + ) COV(X2(), X2(t))

=
f ), (tl to t6 + to) (10)

-( 1 ) (t2 -to -t6 + to)

=02 V2V V1V

r V2)lVl2 1
l (v, + V2) 0.

There remain only the covariances of ul(i) and x6M with the other variables X3
xWM, and X5. These are immediate:

V2
COV(X6X3

VI + V2 JO X ",X

+=( V2) COV(X2(t), X3(i))+V + V)
_ cov(xi(),x3(i)) COV(X2(i),X3(i)) (11)

and
cov(u (t), X3(I)) = cov(XI(t), x3()) COV(X2(t), X:3(t)) 0,

the other covariances being analogous.
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The u1i) have zero covariance with all other population phenotypes, and each is
normally distributed with mean zero and variance cr2(vI + V2). The distribution of
the sets of variables (Ul), x6Mt , x3 i), x4(i), x(i)) is given by

P

(2T)P/2ov1PVl + V2)P/2 exp
2

-
2 E

1P (12)

(2 n-)' p/2 p/2 exp L - 2E (x(i) Xo(a'Ti))-xM X

where the x'i) are the "reduced" vectors (X6(i), x3(),X3 4 x5(i)) and T1 is a tree
matrix whose components correspond to the covariances among these variables. The
columns and rows of T corresponding to populations 1 and 2 have been stricken, and
a new column and row for "population" 6 has been added, so that

t6- to, ts to tq - to) to-to

T1= t8-to1 (13)
t9 -to as before

Lto to

where t6 t6 + v1v2/(vl + v2). It will not matter where in the matrix the new
row and column are inserted, provided that the x6() are inserted in the correspond-
ing position in the reduced vectors xfi).

The result of these transformations is that when x1(i) and x2(i) are transformed
to SkI and xW"), the likelihood of the tree, given the transformed data, is the same
as the product of the likelihoods of the -two trees shown in figure 2. Populations 1
and 2 have been "pruned." They have been replaced by a one-population tree and
by calculating a value for x6 and a new time for point 6.
We can now repeat the process on the new tree. We could "prune" either popula-

tions 4 and 5 or populations 6 and 3. If we do the latter the transformations of
phenotypes and times will be:

U2 _X6 -X3

X8 (iM X6 X3 ( i)
V:,+ V V)+ + )s

and (14)

v3v6
8f t + +

where V3 - t3 - t8 and v6 t6- t8. This transformation leaves the values ul M
X'i), and x5( unchanged. The likelihood of the original tree, given the doubly
transformed set of phenotypes, is now the product of three independent distribu-
tions: one for the u1"), one for the U2U), and one for the populations x8(, X4(i),
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vI + V2
U1
p

ts

0o
FIG. 2.-The tree after one step in the "pruning" process. The likelihood of the tree shown

in fig. 1 is equal to the product of the likelihoods of the two trees shown here. We have
vl = x1 -x6, v.2= x2-x, x6 = (v2x1+v1x2)/(v1+v2), t6' =t6+vlv2/(v,+Van), and
U1 = 1- X2-

and x5(i). Continuing this process, we ultimately have five sets of transformed values:
U1i$',( u3M), U4 and x9(i). Their joint distribution is the product of five
distributions:

f )
e

(2T)P/20-p(V, + V2)P/2

(15)

1

(2ir)"2cr"(V8' + V7')"!2
p 1

Z (X() - X(i) )2
2 i=(l
2 02(Vl)

1
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The likelihood of the original tree, given the transformed set of data, is the same
as the product of the likelihoods of the five trees shown in figure 3. In that figure,
as in equation (15), the v, are primed if the corresponding ti has been modified
before it is used to calculate the vi.
The reader who has followed the argument step by step may have detected some

sleight of hand. We mean to calculate the likelihood of a tree based on a set of data,
but equation (15) is the likelihood based on a transformed set of data. Will the
result be affected? It can be shown that if an invertible linear transformation is
applied to a set of data and if the original set of data has a continuous joint distri-
bution, the probability density of the original values will be equal to the probability
density of the transformed values times a constant, the Jacobian of the linear trans-
formation. However, in this case, the Jacobians of the transformations given by
equations (7) and (14) are unity, so that the probability density of a point in the
original set of variables is the same as the probability density at the corresponding
point in the transformed variables.
The last term of equation (15) raises an interesting set of problems. The xo(t)

must be estimated from the data. The maximum-likelihood estimate of xo(0) is
obviously x9(f). Setting xo(i) xf), the last term depends on v9'. This is t9' - to.
Since t9' > t9 as a result of the "pruning" process, we can make v9' no smaller than
t.,'- t9. We are not confronted by a singularity-this term is always finite. But a
problem does arise in the choice of to. If we make a maximum-likelihood estimate
of to, then since it only enters into equation (15) as part of v9', the maximum-
likelihood estimate will be t9. But to is an arbitrary starting point, not a real prop-

U4

V, +V7 4 4

U2
v6+v,3

U3
V4+V5

Ut
VI +V2 -1

x9-

O 01 0o O to0
FIG. 3.-When the tree in fig. 1 has been completely "pruned," the likelihood of that tree,

given the transformed set of data, is exactly the product of the likelihoods of these five single-
population trees. See text for details.
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erty of the evolutionary tree. Estimating to from the data is very different from
fixing it at some time. Note that

V9" - t9" to + t9 to. (16)

If we take to sufficiently far in the past, then the contribution of (V9') -P/2 to the
likelihood given in equation (15) will not be much different for trees which differ
in their values of t9' or of t9. In this case the last term of equation (15) will be
effectively a constant, and it will not influence the choice of the tree. But if we
estimate to, we get to = t9, so

va- t9' - t9. (17)

Then (V9') -P/2 will be greater the closer t9' is to t9. Now the last term of equation
(15) has a substantial influence on the choice of a maximum-likelihood estimate.
In computer runs on actual data, the influence of using equation (17) usually

forced the maximum-likelihood estimates to have a four-way fork at the base of
the tree. When the last term of equation (15) was dropped, the maximum-likelihood
estimates had a bifurcation at the bottom, and the four-way forks vanished. Since
there is no particular reason to assume that true evolutionary trees preferentially
have a multiway fork at their base, one would like some logical justification for
using equation (16) and assuming t9 -to to be very large, in other words, for
dropping the last term of equation (15). By dropping that term, we are in effect
using only the ujM) to estimate the tree. These do not depend on the sizes of the
x/i), but only on their differences. In effect, we are dropping the estimation of
the x0t
A compelling argument for doing this can be made in the case of a two-population

tree. In that case, estimating the tree is the same as estimating the time of the first
fork. If we use equation (17), it is easily shown that the maximum-likelihood esti-
mate of this time is (XlI - x.i,) 2/4p, while if we drop estimation of the xo~l),
the estimate of the time of the first fork is twice as large. The latter estimate is not
only an unbiased estimate, it is also consistent. As we consider more and more

characters the estimate converges on the true value. The estimate using equation
(17) converges on half the true value. Therefore, in this case, the procedure of
dropping the x0(t) is clearly superior.
By considering only the uj/) and dropping estimation of the xOM we are carrying

out a "marginal-likelihood" procedure [7]. E. A. Thompson (personal communica-
tion) has shown that the procedure proposed here satisfies Kalbfleisch and Sprott's
criteria for the use of marginal likelihoods.
The procedure outlined in this section applies also to trees containing trifurca-

tions and branchings of higher order. To deal with them, it is only necessary to
insert imaginary segments of zero length in such a way as to convert the multi-
furcations into bifurcations. This will not affect the likelihood of the tree. Nor will
that likelihood become infinite as a result of the presence of segments of zero length.
The v, in equation (15) are not, of course, the original lengths of the segments,
but the lengths after ti has been changed to ti' by the "pruning" process. Since this
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amounts to increasing vi by half the harmonic mean of the final lengths of the two
segments above segment i, vi' will be positive. The only case in which a singularity
can appear is the trivial one in which two branch tips have identical phenotypes in
all characters.

THE SUFFICIENCY OF DISTANCES

The quantities k(zi) )2 in equation (15) bear a suspicious resemblance to dis-
tances. This raises the question of whether we can compute the likelihood (15)
directly from the pairwise distances between the populations. The reader must
already know the answer, since I obviously would not have raised the question if
it were not possible to confine our attention to distances.

If we plot each population in a space defined by the values of its phenotypes, so
that the coordinates of population j are (xj(1), ., xj(P)), the distance between
populations 1 and 2 is indeed given by

P P

D122- 2, (xli Xji))2 - Z (Ui(i))2 (18)
i~l tii

Then if we know D122, we can substitute it directly into the first term of equation
(15). An analogous principle holds for any pair of tip populations descended from
the same immediate ancestor. Thus, we can also substitute D452 directly into the
third term of equation (15). However, the corresponding quantities in the second
and fourth terms of equation (15) are not equal to any of the D j2. The quantity
in the second term is

P P

.E 2(uX(i))2 - (x6(i xP(i))2 (19)
i=1 i 1

The X) are not original data points, but are averages of the x1(i) and x(i), namely,

V2 VV1 X
X - ( X1 (i) + ( ) x2.i) (20)

\V1 + V2 /V1 + V.,

We can show by straightforward but tedious algebra that if

V

D632 (X6(i) -X3M)2

then

D632 ( V) D: s2 + ( V V ) D.,;32
V1 + V., VI +(V2

(21)

( 1 D V) ( 1 - )D,,2
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More generally, if we form a new population, k, by "pruning" the segments i and j
immediately above fork k, the distance from the new "population" to some other
population, m, is given by

Dkm2= Dim2 + ( i ) Dj2 V(Vi) ( Vj) j22DM
V~i+ Vj

Dit
V,! + Vj

Dm
Vi + Vj Vi + VjD

Every time we "prune" the tree we can use equation (22) to calculate the dis-
tance from the new tip population to all the other tip populations. If we drop the
last term of equation (15), that equation becomes

1
(2r)4P/2o4P[(v + v2)(V6' + V3) (V4 + V5) (V8' + V7')]P/2

. 1 ( 2 D632 D452 D872 (23)
l 22 V1 + V_ + V6' V3 +V4 + V5 +V8' V7 2-

The likelihood of this tree depends on the original data only through the quantities
2~~ ~~~~h and2 D_2 ditnebtwnD12, D63,ID45 and D87 . The quantities D122 and D4, are distances between

original tip populations, and both D632 and D872 can be calculated from the original
pairwise distances Dij2. In fact, all of the Dij2 enter into equation (23) in one way
or another. Provided that dropping the last term in equation (15) is valid, the set
of pairwise distances Dij2 are sufficient statistics for determining the maximum-
likelihood evolutionary tree.

CORRELATED CHARACTERS

The above distances were calculated from characters which were assumed to
undergo independent Brownian motion with equal variance, cra. We often en-
counter characters with functional or genetic correlations. We usually have no
direct information about the covariances of the evolutionary changes in the char-
acters, but frequently samples of individuals from each population are available,
enabling estimation of the within-population covariances of the characters. The
generalized distances (or "Mahalanobis distances") can then be calculated between
all pairs of populations. There are two conditions which must be satisfied (or at
least closely approximated) if generalized distances are to be used as the distances
between populations in the above analysis. First, the mean population phenotype
for each character must be a linear combination of a series of underlying variables,
each of which changes through time according to an independent Brownian motion
piocess. Second, the covariances of the evolutionary changes in the observed char-
acters must be proportional to the within-population covariances of these characters.
When we do not know the constant of proportionality between the two sets of
covariances, this will be equivalent to not knowing cr2 in the underlying Brownian
motion. Therefore when we obtain an estimate of the evolutionary tree, the times
of branching can be estimated only in units of 1/cr2, and these cannot be converted
to years from the present unless cr2 is known.

483



FELSENSTEIN

In calculating the generalized distances, we are in effect finding a linear transfor-
mation which makes the characters independent and of unit variance each. This
transformation which carries us from the correlated observed characters y(l) to the
independent characters x(i) does affect the likelihood. Equations such as (23) cal-
culate the probability density of the transformed variables, which equals the prob-
ability density of the original variables divided by the Jacobian of the transforma-
tion. In this case, the Jacobian is not necessarily unity. But the transformation is
independent of the particular evolutionary tree. Since all statistical conclusions
are drawn from the ratios of the likelihoods of different evolutionary trees, the
Jacobians will cancel out and the result will therefore be unaffected by the trans-
formation. In practice, of course, we never actually obtain the transformation: it is
implicit in the calculation of the Dj2.
A more systematic statement of the algorithm for calculating the likelihood is

given in the Appendix. Combining this algorithm with routines for making small
changes in the shape of an evolutionary tree, it is possible to construct computer
programs which search for a local maximum in the likelihood surface and thus make
a maximum-likelihood estimate of the evolutionary tree. This sort of procedure
does not guarantee that we will find the true maximum-likelihood estimate of the
tree topology. It does not even guarantee that if our final estimate has a certain
topology, the times of branching will be the best which could accompany that
particular topology. It will have the same limitation as any "hill-climbing" maxi-
mization algorithm: it will climb the nearest hill rather than the highest one. The
more rearrangements of the tree that are tried and the more runs that are made
with different initial trial trees, the more likely it is that the program will reach
the highest point on the likelihood surface. This paper presents only an algorithm
for calculating the likelihood. Since I claim no special validity for the routines I
use to make small changes in an evolutionary tree, readers are left to their own
devices in constructing computer programs.

QUANTITATIVE CHARACTERS

We now consider whether polygenic quantitative characters satisfy the assump-
tions made above, so that generalized distances based on these characters can be
used in the estimation of evolutionary trees. First, consider an additively deter-
mined trait with no dominance. The character is determined by m loci, each having
two alleles. The contribution of the ith locus to the individual's phenotype is 2ai,
an, or 0, depending on whether the genotype at that locus is AA(i)M, AM ), or
a(I)a(l). The population mean of the character is then

m

,J=Z 2piai, (24)
i-1

where pi is the gene frequency of A i. The population mean is thus a linear com-
bination of m random variables, the pi.
The change in the mean in one generation is
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sn

-,u 2 (,pi)aj. (25)
i=1

Assume that all changes are the result of random genetic drift, with effective popu-
lation size N6. Then

m

E(A/.L) 2 E(Api)ai 0; (26)
i=1

var (A.) 4 j var(Api) a,2 = 4 Z Mi - P)a22. (27)

We need to check whether the variance in evolutionary change (27) will be propor-
tional to the within-population variance. If there is no environmental contribution
to the character, the within-population variance is

m

var (P) = 2pj(1 -p,)a2, (28)
i-1

so that the variance of evolutionary change is exactly 1/Ne times the within-
population variance. To be able to use generalized distances, we must also verify
that within-population variances are the same. This will be true if (1) the gene
frequencies in different populations, p., are not far apart; or (2) the character is
controlled by so many loci that if a population has pj(1 - pi) at one locus unusu-
ally large, it will have other loci with pi(1 - pi) unusually small, so that equation
(28) will be approximately constant.

If the effective numbers, Ne, of the populations are unequal, their variances of
evolutionary change will be unequal. Nevertheless, it is still possible to carry out
maximum-likelihood estimation. If one population has half the effective population
number of another, its variance of gene frequency change will be twice as large.
We can therefore interpret our "time" scale as actually measuring the total amount
of evolution, proportional to the sum of 1/N, over generations. Since some tip
populations will have accumulated a larger amount of genetic drift than others, we
must also allow the "times" of the tip populations to be unequal. We can do this
by fixing one tip population's "time" arbitrarily, and allowing all the other tip
population "times" to be estimated. It can be shown that when we do this, we will
not be estimating a rooted evolutionary tree, but instead an unrooted tree (which
may also be thought of as a branching network containing no loops).

Sometimes the same genes will contribute to several characters. This will not
create any difficulty. If we treat the gene dose at each locus as a separate character,
it can assume the values 0, 1, and 2. Each gene dosage will have the property that
its evolutionary variance is 1/N, times its within-population variance. Furthermore,
any linear combination of the gene doses will have this property. If we find a set of
linear combinations of the phenotypes which are independent, as we always can,
these transformations will preserve the property that the variance of evolutionary
change is proportional to within-population variance.
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It was assumed that the characters had no environmental contribution. If they
are affected by environmental factors, we can write VT - VA + VE, where VT is the
within-population total variance, VA is the quantity calculated in equation (28),
and VE is environmental variance. In calculating D , we want to use the quantity
in equation (28), which is VA. Neither equation (27) nor the covariances between
characters will be affected by the presence of environmental variance (in simple
cases). We can multiply observed within-population variance by h2 ( VA/VT),
the heritability of the character, to obtain the additive variance VA. After VT has
been changed to VA for each character by using the appropriate h2, we can proceed
to calculate D2 using this altered within-population covariance matrix. If the en-
viionmental components of different characters are correlated, the correction is
somewhat more complicated. Environmental differences between populations can
also mimic genetic differences. The lack of information about possible environ-
mental effects within and between populations will be a serious source of error with
many types of quantitative character data. Persons analyzing such data should
proceed with extreme caution.

So far, all genetic variance has been additive. If we allow the presence of domi-
nance variance, the situation is more complicated. The mean phenotype is now a
quadratic function of the individual gene frequencies. This means that genetic drift
in the frequencies will cause a change in the mean phenotype, a change whose
expectation is not zero. One might imagine that the presence of this "inbreeding
depression" would invalidate a Brownian motion model. However, if the gene fre-
quencies in the individual populations are nearly the same, the amount of pheno-
typic change due to inbreeding depression will be approximately the same in all
populations. In fact, it can be shown that for large effective population number, the
differences between populations will behave the same way as do the differences
between populations in the case of Brownian motion. The variance of evolutionary
change is equal to 1/Ne times the additive genetic variance of the character. There-
fore the method of correcting within-population variances remains the same: multi-
ply them by the heritability of the character. These results can be extended to
cases with multiple alleles, but this will not be done in this paper.

In these models, the random component of phenotypic change has been due to
random genetic drift. At first sight, it appears that we can make much the same
analysis if the randomness is due to variation in selection coefficients. However, in
this case there is no natural relationship between within-population covariances and
the covariances of evolutionary change. Characters which are independent within
a population may have selection pressures which are highly correlated, and vice
versa. There are also mathematical differences in the form of the equations for
variances of gene frequencies. These cast further doubt on the tractability of models
of "selective drift."

GENE FREQUENCY DATA

Edwards and Cavalli-Sforza [ 1] introduced measures of distance calculated from
the frequencies of alleles at a number of polymorphic loci. For a locus with two
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alleles, the allele dose per gene, P, can be considered as an additive phenotype with
a=- and no dominance or environmental variance. The mean gene dose is the
gene frequency of the population. The within-population variance of gene dose is

var(P) - pi( - p), (29)2

and the variance of the evolutionary change in one generation is

var(AP) = var(Api) -

AO - tP) (30)
2Ne '

so that gene frequencies under random genetic drift satisfy the condition that the
variance of the evolutionary change is i/Ne times the within-population variance.
If the pi are sufficiently close to each other that pi( 1 - pi) is nearly the same in all
populations, the requirements for approximating this process by Brownian motion
will be met.
A measure equivalent to D2 in this case is

(PI -P2) F(Pi_-P2)2 (P1-P2)2 131
~*-~ 2L 0 + 1- (31)

2 P0- P) _ p p-

where Pi and P2 are the frequencies of one allele in the two populations and p is
the arithmetic mean of pi and p2. Kurczynski [8] has shown that for equal sample
sizes in the case of multiple alleles, an analogue to equation (31) is

-2(Pjj Pj2)2 (32)
J- (Pjl_ + Pj2a)

j=1

where pji and pj2 are the frequencies of allele j in populations 1 and 2. Summation
is over all alleles at the locus. I have multiplied Kurczynski's actual formula by
2 to make it directly comparable with equation (31). Kurczynski's original formula
would be applicable in a haploid population. In a population of diploids, if D2 is to
have the same approximate meaning for a quantitative character as for a gene
frequency, we must use equation (31) or (32) or approximately equivalent formulas.

Other measures of genetic distance have been proposed [ 1, 9-11]. All of these
distance measures have the property that they are asymptotically equivalent to
each other when the Pji are close to Pi2, and their properties differ when this does
not hold. This area in which their general properties are similar is also the area in
which the random genetic drift process most nearly satisfies the assumptions of a
Brownian motion model. From a maximum-likelihood standpoint, that measure of
genetic distance is best which comes closest to yielding the correct solution for the
maximum-likelihood evolutionary tree. At present, it is not known which measure
of genetic distance is best. From the point of view of this paper, it does not matter
much which is used, provided that one knows how to combine measures at different
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loci and how to combine distances for gene frequency data with values of D' for
quantitative characters.

In combining gene frequency distances with quantitative character distances, a
useful general principle is that the expected value of D2 for a single quantitative
character must be the same as the expected value for a two-allele locus (since a
two-allele locus should give the same information if we consider the dosage of one
allele to be a quantitative character). Thus, both are expected to contribute equal
amounts of information. More generally, the expected value of D2 after one genera-
tion of divergence should be 2k/Ne, where k is the number of degrees of freedom
in the character being measured. For quantitative characters, k is the number of
characters (excluding cases of complete dependence of some characters on others),
and for gene frequencies it is one less than the number of alleles.

For gene frequencies in diploids, the measures G"2, B2, and G,2 given by Bala-
krishnan and Sanghvi [9], and the measure Dk2 given by Kurczynski [8], all have
expectations k/Ne for two populations which have been separated for one genera-
tion. Thus, they can be used in place of D2 once they have been multiplied by 2.
The factor of 2 can be justified on intuitive grounds. All of these distance measures
use as their equivalents of within-population allele covariances the covariances of
allele doses for a single gene. To be comparable with quantitative characters one
would have to use the covariances of average allele doses in a diploid genome. This
differs by a factor of 2.
The distance measure E2 proposed by Edwards [11, 12] cannot be used directly

in place of D2. Since
8 [l - (PilPi) 1/2]

E2 , (33)
[1 + E (Ti/n)1/2] [1 ±+ E(/n)l/2]

i

the expected value of E2 after one generation of drift in both populations is
approximately

E(E2) = (n-1) 1 + 2 (pi/n)1/2 + 1/n], (34)
Ne

ignoring terms of order Ne-2. Thus the expected divergence is dependent on the
gene frequencies. The dependence arises from the presence of the denominator in
equation (33). If we use only the numerator of equation (33) as our measure of
distance, it has expectation (n - 1)/Ne k/Ne, and in fact is an exact multiple
of the measure proposed by Edwards and Cavalli-Sforza [ 1]. Since the numerator
must be multiplied by 2 to be comparable with D2, their distance measure should
be used in the form

n

S= 16[ I (PilPi2)'/2 l (35)

The distance D of Nei [rI] can also be shown to have expected divergence depen-
dent on the gene frequencies. For small differences between pi, and Pi2, Edwards
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and Cavalli-Sforza's S is asymptotically the same as G82, B2, G,2, and Dk2. Which
of these measures performs best in maximum-likelihood calculations when inserted
in place of D2 has not been clearly determined.

STANDARD ERRORS FOR THE ESTIMATES

As in any maximum-likelihood procedure, we can calculate asymptotic variances
and covariances of our estimates by taking -A-', where A is the matrix of second
partial derivatives of the log-likelihood surface at the maximum-likelihood values.
It is possible to obtain separate expressions for each of these second derivatives
using matrix derivatives. The evaluation of -A-' will then involve about as much
calculation as obtaining m2/2 likelihoods, where there are m times being estimated.
A more straightforward approach involving the same amount of calculation would
be to calculate second-order differences in the log likelihood for small displacements
around the estimates, use these as approximations to the elements of A, and then
obtain -A-' by direct inversion, as before. This also involves calculation of
approximately m2/2 likelihoods.

Both of these procedures may involve substantial computation compared with
the computation necessary to find the maximum-likelihood tree in the first place.
A cruder but simpler technique is to calculate the second-order difference of the
log likelihood with respect to variation in each of the m parameters separately.
Taking the inverse of each of these, we get a quantity which is an underestimate
of the true asymptotic variance for that parameter. These quantities will be useful
(1) to give a rough idea as to which parts of the tree are best known, and (2) to
provide lower bounds for the true variances. These standard errors relate only to
the time of each node. The implicit assumption is that a sufficiently large amount
of data has been gathered so that the topological form of the tree is known and
that only the exact fork times remain to be determined. This will almost never be
true in practice. Therefore, large standard errors of node times must be taken as
indicators of uncertainty about the topology of the tree.

It is easy to overinterpret the results of this sort of analysis. Fork-time variances
and covariances should be taken, as Mark Twain said, "with a ton of salt." The
validity of such variances and covariances is dependent on the correctness of the
underlying model of evolution. Surely we are justified in being highly skeptical of
these models. When the data are based on quantitative characters, it will be neces-
sary to make size corrections, since size may change more readily in evolution than
shape. We must also be persuaded that the measurable characters are not subject
to strong natural selection, a most dubious assumption.
When gene frequency data are used, we are usually dealing, not with separate

species, but with populations which are only partially reproductively isolated. A
model of evolution by branching and complete reproductive isolation will be inap-
propriate. Morton et al. [13] have been particularly critical of the use of branching
models for the evolution of human populations. Real human populations have
neither maintained the complete isolation implicit in branching models nor the
steady rates of exchange of migrants implicit in models of "isolation by distance."
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A more realistic model of human populations might prove to be computationally
intractable. Until such a model can be developed, branching models and isolation-
by-distance models will be most useful when both are fitted to the same data.

SUMMARY

Edwards and Cavalli-Sforza proposed the estimation of evolutionary trees by
maximum likelihood for a Brownian motion model of evolutionary change. They
were prevented from calculating such estimates by singularities in their likelihood
function. It is shown that if one drops the estimation of the phenotypes of the fork
populations and estimates only fork times, there are no singularities in the resulting
likelihood surface, and ordinary maximum-likelihood estimation is possible. Estima-
tion of the initial phenotype and time of the initial population is dropped using a
procedure equivalent to "marginal likelihood." It is then shown that the generalized
distances between all pairs of populations are sufficient statistics for the estimation
of the maximum-likelihood tree. A simplified computational procedure is derived
to calculate the likelihood of an evolutionary tree. It is shown that quantitative
characters and gene frequencies approximately satisfy the assumptions of the model
of evolution by Brownian motion if evolution is by random genetic drift. General-
ized distances calculated from these two types of data can be combined, and guide-
lines for doing this are given. The interpretation of standard errors obtained from
the maximum-likelihood procedure is discussed.
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APPENDIX
PROCEDURE FOR CALCULATING LIKELIHOOD OF A TREE

FROM GENERALIZED DISTANCES

We are given an n X n array, D1j2, of the squared generalized distances between tip
populations; the number of characters, p; the times, ti, of the tip populations and of the
forks (which may be either bifurcations or multiway branchings); a function, anc(i),
which gives the number of the fork immediately ancestral to each fork or tip i, and an
array of indicator numbers, or some other means of indicating which tip populations are
still on the evolutionary tree (i.e., have not yet been "pruned"). It is assumed that the
times, ti, have already been multiplied by c2, so that one generation has become Gw2 units
of "time." Then the following procedure will calculate the likelihood of the tree:

1. LetS=OandT=l.
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2. Find two tip populations on the tree, say i and j, which have the same immediate
ancestor, k, so that k = anc(i) = anc(j).

3. Let vI = ti - tk, V2 = tj -tk, and f = vl/(vl + v2).
4. Change S and T: S *-S + Di12/(v1 + v2), T v T (v1 + 2), where "v" means is

replaced by."
5. Recalculate the squared distances, Dim2, between population i and every other popu-

lation m still on the tree (except population j): Dim2 < (1- f)DD,,2 + fDjm2 - (1 -

f)D~j2. Be sure to keep the new values of Dmi2 and Dm2 equal.
6. Remove tip j from the tree.
7. Change the time of tip i to ti' = tk + V1v2/(V1 + V2).
8. If there are no further tips or forks which have k as their ancestor, other than i

and j (i.e., if k was a bifurcation), remove fork k from the tree and change anc(i) so
that it is now equal to the previous value of anc(k).

9. Go back to step 2 unless there is now only one tip remaining on the tree. If so,
then we can now calculate the likelihood as L = T-PI2 e-SI2. A factor of (21T)-(n-l)p/2
has been omitted from this expression. If log likelihood is preferred, it is logL =-(p72)
logT - S/2.

Since T may be a product of small quantities, it might be preferable to replace it by W,
where initially W = 0, and in step 4: W <- W +loge(v1 + v2). Then logL =-(p72)
W-S/2.
Note that the procedure given here differs from the "pruning" process described in the

text of this paper in that when populations i and j are removed by "pruning," the syn-
thetic population which replaces them is called i rather than k. This will not, of course,
affect the result.

REFERENCES

1. EDWARDs AWF, CAVALLI-SFORZA LL: Reconstruction of evolutionary trees, in Phe-
netic and Phylogenetic Classification, edited by HEYWOOD VH, MCNEILL J, London,
Systematics Association Publication no. 6, 1964, pp 67-76

2. CAVALLI-SFORZA LL, EDWARDS AWF: Analysis of human evolution, in Genetics
Today, Proceedings 11th International Congress of Genetics, vol 3, edited by GEERTS
SJ, Oxford, Pergamon, 1965, pp 923-933

3. CAVALLI-SFORZA LL, EDWARDs AWF: Phylogenetic analysis: models and estimation
procedures. Evolution 21:550-570, 1967; Am J Hum Genet 19:233-257, 1967

4. EDWARDS AWF: Estimation of the branch-points of a branching-diffusion process.
J R Statist Soc B 32:155-174, 1970

5. KDD KK, SGARAMELLA-ZONTA LA: Phylogenetic analysis: concepts and methods. Am
J Hum Genet 23:235-252, 1971

6. MALYUTOV MB, PASSEKOV VP, RYCHKOV YG: On the reconstruction of evolutionary
trees of human populations resulting from random genetic drift, in The Assessment
of Population Affinities in Man, edited by WEINER JS, HUIZINGA J, Oxford, Claren-
don, 1972, pp 48-71

7. KALBFLEISCH JD, SPROTT DA: Application of likelihood methods to models involving
large numbers of parameters. J R Statist Soc B 32:175-208, 1970

8. KURCZYNSKITW: Generalized distance and discrete variables. Biometrics 26:525-
534, 1971

9. BALAKRISHNAN V, SANGHVI LD: Distance between populations on the basis of attri-
bute data. Biometrics 24:859-865, 1968

10. NEI M: Genetic distance between populations. Am Naturalist 106:283-292, 1972

491



492 FELSENSTEIN

11. EDWARDS AWF: Distances between populations on the basis of gene frequencies.
Biometrics 27:873-881, 1971

12. EDWARDS AWF, CAVALLI-SFORZA LL: Affinity as revealed by differences in gene fre-
quencies, in The Assessment of Population Affinities in Man, edited by WEINER JS,
HUIZINGA J, Oxford, Clarendon, 1972, pp 37-47

13. MORTON NE, YEE S, HARRIS DE, LEW R: Bioassay of kinship. Theor Pop Biol
2:507-524, 1971


